
A few C++11
tips

Bruce Merry

Language
Features

Library
Features

Other Stuff

A few C++11 tips

Bruce Merry

IOI Training Mar 2014



A few C++11
tips

Bruce Merry

Language
Features

Library
Features

Other Stuff

Outline

1 Language Features

2 Library Features

3 Other Stuff



A few C++11
tips

Bruce Merry

Language
Features

Library
Features

Other Stuff

The auto Keyword

Variables declared auto take their type from the initializer:

map<int, int>::iterator it1 = m.begin();
auto it2 = f.begin();

Can also force it to be a reference:

auto &value = vec[3];
value++; // modifies vec[3]



A few C++11
tips

Bruce Merry

Language
Features

Library
Features

Other Stuff

The auto Keyword

Variables declared auto take their type from the initializer:

map<int, int>::iterator it1 = m.begin();
auto it2 = f.begin();

Can also force it to be a reference:

auto &value = vec[3];
value++; // modifies vec[3]



A few C++11
tips

Bruce Merry

Language
Features

Library
Features

Other Stuff

Loops With Auto

The auto keyword saves typing in loops:

for (map<int, int>::iterator it = m.begin();
it != m.end(); ++it) {

// Do stuff with *it
}
for (auto it = m.begin(); it != m.end(); ++it) {
// Do stuff with *it

}



A few C++11
tips

Bruce Merry

Language
Features

Library
Features

Other Stuff

For Each Loop

C++11 also supports Java-style for-each loops:

vector<int> v;
for (int value : v) {
// value is a copy of the vector element

}
for (int &value : v) {
// value references the vector element

}
for (auto &value : v) {
// auto keyword works here too

}



A few C++11
tips

Bruce Merry

Language
Features

Library
Features

Other Stuff

Brace Initialization

In C++03, arrays and structures can be initialized with a
brace-enclosed list:

struct S { int a; double b; };

S array[2] = { {3, 1.5}, {4, 2.5} };

But STL containers cannot.



A few C++11
tips

Bruce Merry

Language
Features

Library
Features

Other Stuff

Brace Initialization of Containers

In C++11, containers can be brace-initialized:

vector<int> v = {1, 2, 3};
vector<int> v{1, 2, 3}; // equivalent

One can also construct temporaries:

func_call(vector<int>{1, 2, 3});

In a number of cases, the type name can be omitted:

func_call({1, 2, 3});



A few C++11
tips

Bruce Merry

Language
Features

Library
Features

Other Stuff

Brace Initialization of Containers

In C++11, containers can be brace-initialized:

vector<int> v = {1, 2, 3};
vector<int> v{1, 2, 3}; // equivalent

One can also construct temporaries:

func_call(vector<int>{1, 2, 3});

In a number of cases, the type name can be omitted:

func_call({1, 2, 3});



A few C++11
tips

Bruce Merry

Language
Features

Library
Features

Other Stuff

Brace Initialization of Containers

In C++11, containers can be brace-initialized:

vector<int> v = {1, 2, 3};
vector<int> v{1, 2, 3}; // equivalent

One can also construct temporaries:

func_call(vector<int>{1, 2, 3});

In a number of cases, the type name can be omitted:

func_call({1, 2, 3});



A few C++11
tips

Bruce Merry

Language
Features

Library
Features

Other Stuff

In-class Initialization

As in Java, class members can have initializers:

class Foo
{
private:

int a = 3;
string name = "bob";

public:
Foo(int a) : a(a) {}

};

Constructors can override the default.



A few C++11
tips

Bruce Merry

Language
Features

Library
Features

Other Stuff

Emplacing Elements

Can combine construction and insertion

vector<pair<int, int> > v;
// C++03
vec.push_back(pair<int, int>(3, 5));
// C++11
vec.emplace_back(3, 5);



A few C++11
tips

Bruce Merry

Language
Features

Library
Features

Other Stuff

Unordered Set and Map

unordered_set is like set

unordered_map is like map

Keys are unordered
Operations are amortized O(1) rather than O(log N)

Like vector, reserve can improve performance
Insertion invalidates iterators



A few C++11
tips

Bruce Merry

Language
Features

Library
Features

Other Stuff

Unordered Set and Map

unordered_set is like set

unordered_map is like map

Keys are unordered
Operations are amortized O(1) rather than O(log N)

Like vector, reserve can improve performance
Insertion invalidates iterators



A few C++11
tips

Bruce Merry

Language
Features

Library
Features

Other Stuff

Unordered Set and Map

unordered_set is like set

unordered_map is like map

Keys are unordered

Operations are amortized O(1) rather than O(log N)

Like vector, reserve can improve performance
Insertion invalidates iterators



A few C++11
tips

Bruce Merry

Language
Features

Library
Features

Other Stuff

Unordered Set and Map

unordered_set is like set

unordered_map is like map

Keys are unordered
Operations are amortized O(1) rather than O(log N)

Like vector, reserve can improve performance
Insertion invalidates iterators



A few C++11
tips

Bruce Merry

Language
Features

Library
Features

Other Stuff

Unordered Set and Map

unordered_set is like set

unordered_map is like map

Keys are unordered
Operations are amortized O(1) rather than O(log N)

Like vector, reserve can improve performance

Insertion invalidates iterators



A few C++11
tips

Bruce Merry

Language
Features

Library
Features

Other Stuff

Unordered Set and Map

unordered_set is like set

unordered_map is like map

Keys are unordered
Operations are amortized O(1) rather than O(log N)

Like vector, reserve can improve performance
Insertion invalidates iterators



A few C++11
tips

Bruce Merry

Language
Features

Library
Features

Other Stuff

Moving Containers

Make one container take over the storage from another:

vector<int> v1(10000);
vector<int> v2;

// C++03: copies elements, expensive
v2 = v1; v1.clear();
// C++03: cheap
v2.swap(v1); v1.clear();
// C++11: cheap, easier to read
v2 = move(v1);



A few C++11
tips

Bruce Merry

Language
Features

Library
Features

Other Stuff

Other Stuff

These are possibly interesting
Lambda functions: define anonymous functions

array container: STL-compatible array wrapper
tuple: extends pair
prev and next

Random number generation
Regular expressions (not yet in GCC)



A few C++11
tips

Bruce Merry

Language
Features

Library
Features

Other Stuff

Other Stuff

These are possibly interesting
Lambda functions: define anonymous functions
array container: STL-compatible array wrapper

tuple: extends pair
prev and next

Random number generation
Regular expressions (not yet in GCC)



A few C++11
tips

Bruce Merry

Language
Features

Library
Features

Other Stuff

Other Stuff

These are possibly interesting
Lambda functions: define anonymous functions
array container: STL-compatible array wrapper
tuple: extends pair

prev and next

Random number generation
Regular expressions (not yet in GCC)



A few C++11
tips

Bruce Merry

Language
Features

Library
Features

Other Stuff

Other Stuff

These are possibly interesting
Lambda functions: define anonymous functions
array container: STL-compatible array wrapper
tuple: extends pair
prev and next

Random number generation
Regular expressions (not yet in GCC)



A few C++11
tips

Bruce Merry

Language
Features

Library
Features

Other Stuff

Other Stuff

These are possibly interesting
Lambda functions: define anonymous functions
array container: STL-compatible array wrapper
tuple: extends pair
prev and next

Random number generation

Regular expressions (not yet in GCC)



A few C++11
tips

Bruce Merry

Language
Features

Library
Features

Other Stuff

Other Stuff

These are possibly interesting
Lambda functions: define anonymous functions
array container: STL-compatible array wrapper
tuple: extends pair
prev and next

Random number generation
Regular expressions (not yet in GCC)


	Language Features
	Library Features
	Other Stuff

